

SOLVING EVACUATION PROBLEMS IN POLYNOMIAL SPACE

Miriam Schlöter & Martin Skutella TU Berlin

Flows Over Time & Lex-Max Flows Over Time

Like classical (static) network flows + time component:

• Each arc a has a transit time (length) τ_a • Each arc a has a capacity (width) u_a dynamic network $\mathcal{N} = (D, u, \tau, S^+, S^-)$: digraph D = (V, A) with capacities u, transit times au, sources $S^+ \subseteq V$ and sinks $S^- \subseteq V$

A flow over time f in $\mathcal N$ with time horizon T specifies the rate of flow entering an arc per time, such that no flow is left in \mathcal{N} after time T.

Lex-Max Flows Over Time:

Example: All capacities are 1, lex-max flow over time wrt $s_1 \prec s_2$ and time horizon T = 4

<u>Given:</u> $\mathcal{N} = (D = (V, A), u, \tau, S^+, \{t\})$, total order \prec on S^+ , time horizon TGoal: lexicographically maximize the amount of flow leaving each source in the given order within time horizon T

Earliest Arrival Flow & Pattern

<u>Given:</u> $\mathcal{N} = (D = (V, A), u, \tau, \{S^+\}, \{t\})$, supplies v on the sources <u>Goal</u>: fulfill the supplies such that at each point in time as much flow as possible has reached the sink t, earliest arrival flow (EAF) Example: $u \equiv 1$, $\tau \equiv 1$, $v(s_1) = 1$, $v(s_2) = 3$, minimal feasible time horizon T = 5

Known Results

• $|S^+| = 1$: EAFs can be computed by sending flow along paths occuring in the successive shortest path algorithm (SSPA) from the sources to sink – polynomial space algorithm!

• $|S^+| > 1$: All algorithms known so far need exponential space!

Earliest Arrival Pattern

 $o^{\theta}(A) := maximum$ amount of flow that can be send from $A \subseteq S^+$ to t within time θ

Hoppe & Tardos, 1995

Lex-max flow over time problems can be solved in strongly polynomial time.

Structure of The EAF-Pattern (Baumann & Skutella, 2006)

Let
$$\theta_1 = \max\{\theta | o^{\theta}(S^+) = p(\theta)\}$$
. It is

$$p(\theta) = \begin{cases} o^{\theta}(S^+) \text{ for } \theta < \theta_1 \\ o^{\theta}(S^+ \setminus S_1) + v(S_1) \text{ for } \theta \le \theta_1. \end{cases}$$

Intuitive interpretation: In an earliest arrival flow the sources in S_1 have to run empty until time θ_1 even if they send as little flow as possible!

Sets $S_1, \ldots, S_r \subseteq S^+$ and times $\theta_1 < \ldots < \theta_r$ such that S_i has to run empty at time θ_i in an earliest arrival flow can be computed in strongly polynomial time (Baumann & Skutella).

Our Main Result (SODA 2017): A polynomial space algorithm for solving earliest arrival flow problems in networks with multiple sources

Special Cases

<u>Given</u>: a dynamic network $\mathcal{N} = (D = (V, A), u, \tau, \{S^+\}, \{t\})$, supplies v on the sources, minimal feasible time horizon T<u>Case 1</u>: $o^T(S^+) = v(S^+)$ (tight case) - it is $p(\theta) = o^{\theta}(S^+)$ for all $\theta \leq T$

Result 1

A flow over time f with time horizon T fulfilling all supplies can be obtained as convex combination of lex-max flows over time that can be found by one submodular function minimization - using the SSPA ensures that the lex-max flows respect the EAF-pattern.

Example: $u \equiv 1$, $\tau \equiv 1$, $v(s_1) = v(s_2) = 1$ and minimal feasible time horizon T = 4convex combination of both lex-max lex-max flow wrt. $s_2 \prec s_1$ lex-max flow wrt. $s_1 \prec s_2$ flows (both weighted with 1/2) <u>Case 2:</u> Let $S^+ = \{s_1, \ldots, s_k\}$, s_i runs empty at time θ_i for all $i \in \{1, \ldots, k\}$ with $\theta_1 < \theta_2 < \ldots < \theta_k.$

General Case

Example: $u \equiv 1$, $\tau \equiv$ indicated in figure, $v(s_1) = 1$, $v(s_{21}) = v(s_{22}) = v(s_{23}) = 1$

Attaching a supersource s_2 to s_{21} , s_{22} and s_{23} with $v(s_2) = 3$ and $v(s_1) = 1$ results in an EAF-problem in which s_1 runs empty a time 4 and s_2 at time 5!

gen. lex-max flow f' wrt. $s_1 \prec s_2$ and $\theta_1 < \theta_2$

Result 2: flow over time f' with: $|f'(s_1)|_{\theta_1} = v(s_1) = 1$, $|f'(s_2)|_{\theta_2} = v(s_2) = 3$ and $|f'|_{\theta} = p(\theta) = o^{\theta}(\{s_1, s_2\})$

Problem with gen. lex-max flow f': Not each original source might send exactly its supply! <u>Solution</u>: Use Result 1 to ensure that all sources send exactly their supply!

<u>Observation</u>: For an earliest arrival flow f we have for all $i \in \{1, \ldots, k\}$:

. . .

 $|f(\{s_i,\ldots,s_k\}|_{\theta_i} = o^{\theta_i}(\{s_i,\ldots,s_k\}) \text{ and } |f(\{s_{i+1},\ldots,s_k\}|_{\theta_i} = o^{\theta_i}(\{s_{i+1},\ldots,s_k\}))$

An earliest arrival flow f behaves like a lex-max flow over time with respect to order $s_1 \prec s_2 \prec \ldots \prec s_k$ and growing time horizons $\theta_1 < \ldots < \theta_k$, generalized lex-max flow over time: flow respects order \prec and

• flow out of s_2 has time horizon θ_2 • flow out of s_1 has time horizon θ_1

• flow out of s_k has time horizon θ_k

Result 2

A polynomial space algorithm that computes generalized lex-max flows over time that respect the EAF-pattern.

Tight for $\theta = \theta_1 = 3$ ($v(s_2) = o^{\theta_1}(s_2)$), solved by lex-max flow wrt. $s_1 \prec s_2$

Result 1: A convex combination of lex-max flows solving this tight problem (flow out of s_2 is not of interest)

Tight for $\theta = \theta_2 = 5$, all flows are weighted with 1/3

Result 1: A convex combination of lex-max flows solving this tight problem

Combine both convex combination \rightarrow convex combination of generalized lex-max flows solving the EAF problem that can be computed in poly space using **Result 2**.

