
Solving Evacuation Problems in Polynomial Space
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Flows Over Time & Lex-Max Flows Over Time

Like classical (static) network flows + time component:

•Each arc a has a transit time (length) τa •Each arc a has a capacity (width) ua

dynamic network N = (D, u, τ, S+, S−): digraph D = (V,A) with capacities u, transit

times τ , sources S+ ⊆ V and sinks S− ⊆ V

A flow over time f in N with time horizon T specifies the rate of flow entering an

arc per time, such that no flow is left in N after time T .

Lex-Max Flows Over Time:

Given: N = (D = (V,A), u, τ, S+, {t}), total order ≺ on S+, time horizon T

Goal: lexicographically maximize the amount of flow leaving each source in the given

order within time horizon T

Example: All capacities are 1, lex-max flow over time wrt s1 ≺ s2 and time horizon T = 4
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A lex-max flow over time f with respect to order s1 ≺ . . . ≺ sk and time horizon T fulfills

|f ({si . . . , sk}|T = oT{si . . . , sk} for all i ∈ {1, . . . , k}, with

oθ(A) := maximum amount of flow that can be send from A ⊆ S+ to t within time θ

Hoppe & Tardos, 1995

Lex-max flow over time problems can be solved in strongly polynomial time.Earliest Arrival Flow & Pattern

Given: N = (D = (V,A), u, τ, {S+}, {t}), supplies v on the sources

Goal: fulfill the supplies such that at each point in time as much flow as possible has

reached the sink t, earliest arrival flow (EAF)

Example: u ≡ 1, τ ≡ 1, v(s1) = 1, v(s2) = 3, minimal feasible time horizon T = 5
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Known Results

• |S+| = 1: EAFs can be computed by sending flow along paths occuring in the successive

shortest path algorithm (SSPA) from the sources to sink – polynomial space algorithm!

• |S+| > 1: All algorithms known so far need exponential space!

Earliest Arrival Pattern

p : [0,∞)→ R+, p(θ) = value of an earliest arrival flow at time θ

Structure of The EAF-Pattern (Baumann & Skutella, 2006)

Let θ1 = max{θ|oθ(S+) = p(θ)}. It is

p(θ) =

oθ(S+) for θ < θ1

oθ(S+ \ S1) + v(S1) for θ ≤ θ1.

Intuitive interpretation: In an earliest arrival flow the sources in S1 have to run empty until

time θ1 even if they send as little flow as possible!
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S1 = {s1}, θ1 = 4

S2 = {s2}, θ2 = 5

Sets S1, . . . , Sr ⊆ S+ and times θ1 < . . . < θr such that Si has to run empty at time θi in

an earliest arrival flow can be computed in strongly polynomial time (Baumann & Skutella).

Special Cases

Given: a dynamic network N = (D = (V,A), u, τ, {S+}, {t}), supplies v on the sources,

minimal feasible time horizon T

Case 1: oT (S+) = v(S+) (tight case) - it is p(θ) = oθ(S+) for all θ ≤ T

Result 1

A flow over time f with time horizon T fulfilling all supplies can be obtained as convex

combination of lex-max flows over time that can be found by one submodular function

minimization - using the SSPA ensures that the lex-max flows respect the EAF-pattern.

Example: u ≡ 1, τ ≡ 1, v(s1) = v(s2) = 1 and minimal feasible time horizon T = 4
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lex-max flow wrt. s2 ≺ s1
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convex combination of both lex-max
flows (both weighted with 1/2)

Case 2: Let S+ = {s1, . . . , sk}, si runs empty at time θi for all i ∈ {1, . . . , k} with

θ1 < θ2 < . . . < θk.

Observation: For an earliest arrival flow f we have for all i ∈ {1, . . . , k}:

|f ({si . . . , sk}|θi = oθi({si . . . , sk}) and |f ({si+1 . . . , sk}|θi = oθi({si+1 . . . , sk})

An earliest arrival flow f behaves like a lex-max flow over time with respect to order

s1 ≺ s2 ≺ . . . ≺ sk and growing time horizons θ1 < . . . < θk, generalized lex-max

flow over time: flow respects order ≺ and

• flow out of s1 has time horizon θ1

• . . .

• flow out of s2 has time horizon θ2

• flow out of sk has time horizon θk

Result 2

A polynomial space algorithm that computes generalized lex-max flows over time that

respect the EAF-pattern.

General Case

Example: u ≡ 1, τ ≡ indicated in figure, v(s1) = 1, v(s21) = v(s22) = v(s23) = 1
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S1 = {s1}, θ1 = 4

S2 = {s21, s22, s23}, θ2 = 5

Attaching a supersource s2 to s21, s22 and s23 with v(s2) = 3 and v(s1) = 1 results in an

EAF-problem in which s1 runs empty a time 4 and s2 at time 5!
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gen. lex-max flow f ′ wrt. s1 ≺ s2 and θ1 < θ2

Result 2: flow over time f ′ with:

|f ′(s1)|θ1 = v(s1) = 1, |f ′(s2)|θ2 = v(s2) = 3

and |f ′|θ = p(θ) = oθ({s1, s2})

Problem with gen. lex-max flow f ′: Not each original source might send exactly its supply!

Solution: Use Result 1 to ensure that all sources send exactly their supply!

t

s2

Tight for θ = θ1 = 3 (v(s2) = oθ1(s2)), solved by

lex-max flow wrt. s1 ≺ s2

Result 1: A convex combination of lex-max

flows solving this tight problem (flow out of

s2 is not of interest)
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Tight for θ = θ2 = 5, all flows are weighted with 1/3

Result 1: A convex combination of lex-max

flows solving this tight problem

Combine both convex combination→ convex combination

of generalized lex-max flows solving the EAF problem that

can be computed in poly space using Result 2.
t

Our Main Result (SODA 2017): A polynomial space algorithm for solving

earliest arrival flow problems in networks with multiple sources


